Background

 Sales of digital cameras surpassed sales of film cameras in 2004.

Digital cameras are boring

• The most common type of digital camera today: cellphone camera.

Can we leverage the computational power?

Why not use sensors without optics?

 each point on sensor would record the integral of light arriving from every point on subject

all sensor points would record similar colors

Pinhole camera (a.k.a. *camera obscura*)

linear perspective with viewpoint at pinhole

Pinhole photography

no distortion

- straight lines remain straight
- infinite depth of field
 everything is in focus

Effect of pinhole size

(London)

© Marc Levoy

Effect of pinhole size

(London)

© Marc Levoy

Wednesday, January 11, 12

Replacing the pinhole with a lens

(London)

Snell's law of refraction

• index of refraction n_t is defined as

 $\frac{\text{speed of light in a vacuum}}{\text{speed of light in medium } t}$

Typical refractive indices (n)

- ★ air = 1.0
- ♦ water = 1.33
- \bullet glass = 1.5 1.8

mirage due to changes in the index of refraction of air with temperature

Refraction in glass lenses

- when transiting from air to glass, light bends towards the normal
- when transiting from glass to air, light bends away from the normal
- light striking a surface perpendicularly does not bend

Q. What shape should an interface be to make parallel rays converge to a point?

Spherical lenses

(Hecht)

(wikipedia)

- two roughly fitting curved surfaces ground together will eventually become spherical
- spheres don't bring parallel rays to a point
 - this is called *spherical aberration*
 - nearly axial rays (paraxial rays) behave best

Examples

© Marc Levoy

Canon 135mm f/2.8 soft focus lens

Wednesday, January 11, 12

77

© Marc Levoy

✦ Canon 50mm f/1.2 L

(wikipedia)

focused at f/1.2

(diglloyd.com)

78

(wikipedia)

Focus shift

shot at f/1.8

✦ Canon 50mm f/1.2 L

narrowing the aperture pushed the focus deeper

(diglloyd.com)

Paraxial approximation

Paraxial approximation

Assume e ≈ 0
Assume sin u = h/l ≈ u (for u in radians)
Assume cos u ≈ z/l ≈ 1
Assume tan u ≈ sin u ≈ u

19

© Marc Levoy

The paraxial approximation is a.k.a. first-order optics

- A assume first term of sin φ = φ φ³/3! + φ⁵/5! φ⁷/7! + ...
 i.e. sin φ ≈ φ
- ★ assume first term of cos ϕ = $1 \frac{\phi^2}{2!} + \frac{\phi^4}{4!} \frac{\phi^6}{6!} + \dots$ i.e. cos $\phi \approx 1$ so tan $\phi \approx \sin \phi \approx \phi$

Paraxial focusing

Paraxial focusing

$$ni \approx n'i'$$

Paraxial focusing

$$n(u+a) \approx n'(a-u')$$

$$n(h/z+h/r) \approx n'(h/r-h/z')$$

$$n/z+n/r \approx n'/r-n'/z'$$

© Marc Levoy

✤ *h* has canceled out, so any ray from *P* will focus to *P*'

Wednesday, January 11, 12

23

 $ni \approx n'i'$

Focal length

What happens if z is ∞ ?

 $n/z + n/r \approx n'/r - n'/z'$ $n/r \approx n'/r - n'/z'$ $z' \approx (rn')/(n'-n)$

24

© Marc Levoy

Lensmaker's formula

 using similar derivations, one can extend these results to two spherical interfaces forming a lens in air

(Hecht, edited)

• as $d \rightarrow 0$ (thin lens approximation), we obtain the lensmaker's formula

$$\frac{1}{s_o} + \frac{1}{s_i} = (n_i - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Gaussian lens formula

Starting from the lensmaker's formula

$$\frac{1}{s_o} + \frac{1}{s_i} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right), \qquad \text{(Hecht, eqn 5.15)}$$

and recalling that as object distance S₀ is moved to infinity, image distance S_i becomes focal length f_i, we get

$$\frac{1}{f_i} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right).$$
 (Hecht, eqn 5.16)

Equating these two, we get the Gaussian lens formula

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f_i}.$$
 (Hecht, eqn 5.17)

© Marc Levoy

From Gauss's ray construction to the Gaussian lens formula

positive y is upward

From Gauss's ray construction to the Gaussian lens formula

Wednesday, January 11, 12

From Gauss's ray construction to the Gaussian lens formula

Wednesday, January 11, 12

Changing the focus distance

 to focus on objects at different distances, move sensor relative to lens

http://graphics.stanford.edu/courses/ cs178/applets/gaussian.html

© Marc Levoy

Changing the focus distance

 to focus on objects at different distances, move sensor relative to lens

• at
$$s_o = s_i = 2f$$

we have 1:1 imaging, because

$$\frac{1}{2f} + \frac{1}{2f} = \frac{1}{f}$$

In 1:1 imaging, if the sensor is 36mm wide, an object 36mm wide will fill the frame.

 $\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$

© Marc Levoy

Changing the focus distance

 to focus on objects at different distances, move sensor relative to lens

• at
$$s_o = s_i = 2f$$

we have 1:1 imaging, because
 $\frac{1}{2f} + \frac{1}{2f} = \frac{1}{f}$

can't focus on objects
 closer to lens than its
 focal length f

Changing the focal length

- weaker lenses
 have longer
 focal lengths
- to stay in focus, move the sensor further back

 focused image of tree is located slightly beyond the focal length

(Kingslake)

© Marc Levoy

The tree would be in focus at the lens focal length only if it were infinitely far away.

Wednesday, January 11, 12

Changing the focal length

if the sensor
 size is constant,
 the field of view
 becomes smaller

 $FOV = 2 \arctan(h/2f)$

Focal length and field of view

Focal length and field of view

Changing the sensor size

if the sensor
 size is smaller,
 the field of view
 is smaller too

smaller sensors

 either have fewer
 pixels, or noiser
 pixels

(Kingslake)

© Marc Levoy

Sensor sizes

"full frame" - Canon 5D Mark II (24mm × 36mm)

Magnification

Wednesday, January 11, 12

Lenses perform a 3D perspective transform

- lenses transform a 3D object to a 3D image;
 the sensor extracts a 2D slice from that image
- as an object moves linearly (in Z),
 its image moves non-proportionately (in Z)
- as you move a lens linearly relative to the sensor, the in-focus object plane moves non-proportionately

© Marc Levoy

★ as you refocus a camera, the image changes size !

Lenses perform a 3D perspective transform (contents of whiteboard)

- a cube in object space is transformed by a lens into a 3D frustum in image space, with the orientations shown by the arrows
- in computer graphics this transformation is modeled as a 4 × 4 matrix multiplication of 3D points expressed in 4D homogenous coordinates
- in photography a sensor extracts a 2D slice from the 3D frustum; on this slice some objects may be sharply focused; others may be blurry

© Marc Levoy

Depth of field

LESS DEPTH OF FIELD

MORE DEPTH OF FIELD

lower N means a wider aperture and less depth of field

Circle of confusion (C)

C depends on sensing medium, reproduction medium, viewing distance, human vision,...

- for print from 35mm film, 0.02mm (on negative) is typical
- for high-end SLR, 6µ is typical (1 pixel)
- larger if downsizing for web, or lens is poor

- dispersion causes focal length to vary with wavelength
 for convex lens, blue focal length is shorter
- correct using achromatic doublet
 - strong positive lens + weak negative lens = weak positive compound lens
 - by adjusting dispersions, can correct at two wavelengths

Visible Light

wavelengths between 400nm and 700nm

Illumination

wavelengths between 400nm and 700nm

Trichromatic Vision

Color Gamut: Consequences

• Goal of photography: reproduce the sensation of seeing a scene.

Color Primaries

Color Primaries

- Choose three primaries R, G, B.
 - Does not have to be pure wavelengths.
- Normalize to obtain a desired reference white
 - This yields an RGB cube

Color Primaries

- What exactly is R, G, B each?
 - Is there a specfic wavelength for each? No.
 - Is there a specific spectrum for each? Yes, but you can pick your own.

Choice of Primaries

- sRGB (HP, Microsoft, 1996)
- Adobe RGB (Adobe, 1998)
- Adobe Wide-Gamut RGB

. . .

Example Pipeline

processing: demosaicing, tone mapping & white balancing, denoising & sharpening, compression

Compact Flash card

storage

Canon DIGIC 4 processor

The Science

- Photoelectric Effect
 - Materials may generate electrons upon being hit by a photon.
- Quantum Efficiency
 - Not all photons will produce an electron.

back-illuminated

The Pixel

• Size matters

- Casio EX-FI: 2.5µ x 2.5µ
- Nokia N900: 3.1μ x 3.1μ
- Canon 5D II: 6.4µ x 6.4µ
- Capacity matters

CMOS vs. CCD

- Complimentary Metal-Oxide Semiconductor
 - per-pixel amplifier converts charges to voltage.
 - cheap, low-power but noisy

- Charge-Coupled Device
 - charge shifts along column to an amplifier
 - good but not as cheap.

Color Filter Arrays

- Recall: we need information on (ρ, γ, β) .
- Need discrimination among multiple wavelengths
 - Three types (of spectral sensitivity) of pixels would be sufficient.
- Color filter array: turns pixels into one of three types.

Bayer Pattern

- Checkered pattern of green and alternating red/blue
- Pretty much everywhere

Bayer Pattern

- Checkered pattern of green and alternating red/blue
- Pretty much everywhere

Cone cells

Color filters in Canon 30D

Foveon Sensor

The Bayer filter Image Sensor

R: 25%, G: 50%, B: 25%

The old-fashioned Bayer filter image sensor can only capture 50% of the green color data, and a mere 25% each of the blue and the red.

The Foveon X3® Direct Image Sensor

R: 100%, G: 100%, B: 100%

The Foveon X3[®] has three layers of photosensors, enabling it to capture 100% of the RGB color data at once.

Analog-to-Digital Conversion

• Convert analog voltage to discrete values.

Noise: Summary

- Photon shot noise
- Hot pixels
- Dark current
- Fixed pattern noise
- Read noise

Much of the literature treats these altogether as a Gaussian noise

Pixel non-uniformity

Signal v. Noise

Test Chart

Captured by Canon 10D (ISO 1600)

Wednesday, January 18, 12

Photon Shot Noise

- Pixels measure the # of incident photons.
 - Upon a fixed area, during a fixed time.

- Varies from time to time.
- Varies from pixel to pixel.
 - Follows the Poisson distribution.

Dark Current

- Electrons dislodged by random thermal activity.
 - Increases linearly with exposure time.
 - Increases exponentially with temperature..

Hot Pixels

- Electrons leaking into wells because of manufacturing defects
 - Increases linearly with exposure time.

Canon 20D, 15s/30s exposure

Fixed Pattern Noise

- Manufacturing variations across pixels, columns, etc
 - Constant over time

Canon 20D, ISO 800, cropped

Read Noise

- Thermal noise in readout circuitry
 - Mainly in CMOS

Canon ID Mk III, cropped

Pixel Response Non-Uniformity

- $\sim 1\%$ variance in the sensivity of pixels
 - Think about it as a per-pixel vignetting issue.

Quantization Error

- Any ADC process has quantization errors.
 - Depends on the bitdepth of the ADC.

Electronic Interference

- Interference from other circuitry
 - Exacerbated by poor insulation