Background

® Sales of digital cameras surpassed sales of
film cameras in 2004.




Digital cameras are boring

® The most common type of digital camera
today: cellphone camera.

Can we leverage the computational power?




Why not use sensors without optics?

(London)

+ each point on sensor would record the integral of
light arriving from every point on subject

+ all sensor points would record similar colors
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Pinhole camera

(a.k.a. camera obscura)

TR

LU SRR TS E TR T P T TR

GRS BRI T

B T T T

T m §

T (TR

int at pinhole

1eWpO

hv

Inear perspective wit

+ |

Wednesday, January 11, 12



Pinhole photography

+ no distortion

e straight lines remain straight

+ 1infinite depth of field

e everything 1s in focus

PINHOLE
PHOTOGRAPHY

Rediscovering a Historic Technique

ERIC RENNER

(Bami Adedoyin)
7
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Effect of pinhole size

8

Photograph made with small pinhole

2

Photograph made with larger pinhole

:

(London)
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Effect of pinhole size

(London)
9 © Marc Levoy
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Replacing the pinhole with a lens

Photograph made with small pinhole
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(London)
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Snell’s law of retraction

s/

#
P

/
¥ : Incident medium

#
o 2 B n;
A\

i | i /‘/ / PNy
r P

v

/

(Hecht)

+ as waves change
speed at an interface,
they also change direction

+ 1ndex of refraction 7;1s defined as

li

sin 0, n

sin®, n.

speed of light in a vacuum

speed of light in medium ¢
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Typical refractive indices (1)

100
2 o o0
¥ rlass ——1=5-=138

www.skylook.net ; ©2000 J.C.Casado

mirage due to changes in the index of
refraction of air with temperature

15 © Marc Levoy
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Refraction 1n glass lenses

%\
C, C

(Hecht)

+ when transiting from air to glass,
light bends towards the normal

+ when transiting from glass to air,
light bends away from the normal

+ hight striking a surface perpendicularly does not bend

14
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Q. What shape should an interface be

to make parallel rays converge to a point?

A. a hyperbola
+ so lenses should be hyperbolic!

ko
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Spherical lenses

(Hecht) (wikipedia)

+ two roughly fitting curved surfaces ground together
will eventually become spherical

+ spheres don't bring parallel rays to a point
e this is called wpherical aberration

> e nearly axial rays (paraxial rays) behave best
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(Canon)

sharp soft focus

Canon 135mm /2.8 soft focus lens

76
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(diglloyd.com)

Focus shift

(wikipedia)

focused at /1.2

+ Canon 50mm /1.2 L.

ol
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(diglloyd.com)

Focus shift

" q il l/}f 2

. 4

sot at 1/1.8

(wikipedia)

+ Canon 50mm /1.2 L.

4+ narrowing the aperture pushed the focus deeper

78
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Paraxial approximation

U
S

4 assuime €
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Paraxial approximation

+ assumee < ()
+ assume sinu =h/l = u (for u in radians)

S SllcicosiE e

N~/

4+ assumelfanu = Sinu < u

18]
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a.k.a. first-order optics

The paraxial approximation i1s

+ assume first term of sin¢ =

*le. sinP = ¢

+ assume first term of cos ¢ =
*ie. cosp =1

esotan ¢ = sinQ = ¢

20
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24

Paraxial focusing

(n) \ (n)

Snell’s law: /
nsini = n'sini’

paraxial approximation:

ni = n'i'

equivalent to

sin o,

_
sinf, n,
with
n = n, for air
!
n' = n, for glass
i,1' 1n radians

0., 0, in degrees
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Paraxial focusing

Given object distance z,
what 1s image distance z”?

P Di
< Z
ni = n'ti'

b
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Paraxial focusing

nu+a) = n'(a-u')

nhiz+h/r) = n'(h/r-h/z"

| | |
EEEa e e S e e e e e T

+ h has canceled out, so any ray from P will focus to P’

2
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Focal length

!

What happens if z 1s 00 ? e [ A R A e T
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ok focal length =z~
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[Lensmaker’s formula

+ using similar derivations, one can extend these results to
two spherical interfaces forming a lens 1n air

(Hecht, edited)

+ as d — 0 (thin lens approximation),
we obtain the lensmaker’s formula

20
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Gaussian lens formula

+ Starting from the lensmaker’s formula

T (nl_l) et o (Hecht, eqn 5.15)

+ and recalling that as object distance s 1s moved to infinity,
image distance s; becomes focal length fi , we get

1 =l ==
e ] e e | Hecht, eqn 5.16
.. .

+ Equating these two, we get the Gaussian lens formula

1 1 1
e~ s Al (Hecht, eqn 5.17)
S, S

it
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From Gauss's ray construction
to the Gaussian lens formula

object /A 1mage

+ positive s, 1s rightward, positive s, 1s leftward

+ positive y 1s upward

b/
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From Gauss's ray construction
to the Gaussian lens formula

object /A 1mage




) .
From Gauss's ray construction

to the Gaussian lens formula

object
=

f (positive is to right of lens)

b . :
1mage

y“l _______________________________________________________

e §;

yO SO

)

Wednesday, January 11, 12



Changing the focus distance

F—3
+ to focus on objects o
at ditferent distances, , @> R
move sensor relative to lens

(FLASE DEWND;

http://graphics.stanford.edu/courses/ S f
cs178/applets/gaussian.html 0 I

30
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http://graphics.stanford.edu/courses/cs178/applets/dof.swf
http://graphics.stanford.edu/courses/cs178/applets/dof.swf
http://graphics.stanford.edu/courses/cs178/applets/dof.swf

Changing the focus distance

+ to focus on objects
at ditferent distances,
move sensor relative to lens

$albse—=N =
we have 1:1 imaging, because

1 I 1
_— 3 — = —

e e

In 1:1 imaging, if the sensor 1s
36mm wide, an object 36mm
wide will fill the frame.

31 ————
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82

Changing the focus distance

+ to focus on objects

at ditferent distances,
move sensor relative to lens

als====8 =0

l

we have 1:1 imaging, because
1 1 1

—_—  F — = —

2E o

can't focus on objects
closer to lens than its

focal length f
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Changing the focal length

+ weaker lenses
have longer

focal lengths

+ to stay 1n focus,
move the sensor

further back

. 6" -
FOCAL LENGTH

+ focused image
of tree 1s located

shghtly beyond .
the focal len gth The tree would be in focus at the lens focal

length only if it were infinitely far away.

85

(Kingslake)
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Changing the focal length

+ 1if the sensor
size 1s constant,

the field of view

becomes smaller

FOCAL LENGTH

FOCAL LENGTH

”

FOV-=2-arctan-(h /2 f)

34
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Focal length and hield of view

FOYV measured diagonally on a

35mm full-frame camera (24 x 36mm)
35

© Marc Levoy
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Focal length and field of view

13
14314k EEkR
= ddddidELE

FOV measured diagonally on a

35mm full-frame camera (24 x 36mm)

36
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Changing the sensor size

+ 1f the sensor
size 1s smaller,

the field of view

1s smaller too

+ smaller sensors
either have fewer
pixels, or noiser
pixels

FOCAL LENGTH

87/
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“tull frame”

SenSOI’ Sizes Canon 5D Mark I1
(249mm x 36mm)

36x24mm (35mm format)

((APS-CH

28.7x19.1mm (EOS 1D) = 1.26x magnification factor

APS-C sized sensors (EOQS 10D, Nikon D100, Pentax *ist D, etc) = 1.5x - 1.6x l q lkon D4 0

18x13.5mm (4/3" system - Olympus E-1)

G5 omm=x=25-Zmin)
(~1.5x crop factor)

8.8x6.6mm (2/3" P&S)

“micro 4/3”

Panasonic GF1
(13mm x 17.3mm)
(~2x crop factor)

“point-and-shoot”

Canon A590
(6.75mm x 4.31mm)
(~8x crop factor)

7.2x5.3mm (1/1.8") 5.3x4mm (1/2.7")

38
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Magnification

object /§ 1mage

42
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Lenses perform a 3D perspective transform

(FLASE DERD)

http://graphics.stanford.edu/courses/
cs178/applets/thinlens.html

(Hecht)

+ lenses transform a 3D object to a 3D image;
the sensor extracts a 2D slice from that image

+ as an object moves linearly (in Z),
its iImage moves non-proportionately (in Z)

+ as you move a lens linearly relative to the sensor,
the in-focus object plane moves non-proportionately

= + asyou refocus a camera, the image changes size |
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http://localhost/~levoy/cs178-applets/thinlens.html
http://localhost/~levoy/cs178-applets/thinlens.html
http://graphics.stanford.edu/courses/cs178/applets/dof.swf
http://graphics.stanford.edu/courses/cs178/applets/dof.swf
http://graphics.stanford.edu/courses/cs178/applets/dof.swf
http://graphics.stanford.edu/courses/cs178/applets/dof.swf

Lenses perform a 3D perspective transform
(contents of whiteboard)

+ a cube in object space 1s transtormed by a lens into a 3D frustum in
image space, with the orientations shown by the arrows

+ 1n computer graphics this transformation 1s modeled as a 4 x 4 matrix
multiplication of 3D points expressed in 4D homogenous coordinates

+ 1n photography a sensor extracts a 2D slice from the 3D frustum; on
this slice some objects may be sharply focused; others may be blurry

44

Wednesday, January 11, 12



Depth of field

LESS DEPTH OF FIELD MORE DEPTH OF FIELD

s e ‘

P lf- /.’,\ , p—e "'. \ i & "/ h - .
; G\ S ~ ‘ ) b O . v : i %":".“‘...,{-'r.t "‘._..'_,:Z.:"

| ‘ _—— N oy G N (e S
& . " P O e e . Vet ey | & T -~

Wider aperture O f/2 Smaller aperture I f/16

f Cooaom)

A

+ lower N means a wider aperture and less depth of field

46 © Marc Levoy
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Circle of confusion (C)

Object Plane
Film Plane

Pe!rmlssuble

Circle of

<>< g
|
|

+ C depends on sensing medium, reproduction medium,
viewing distance, human vision,...

e for print from 35mm film, 0.02mm (on negative) 1s typical
e for high-end SLR, 6y 1s typical (1 pixel)

e larger it downsizing for web, or lens 1s poor

47
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. ; red and blue have
Chromatic aberration the same focal length

Crown .

- Chromatic aberration

Achromatic doublet

(wikipedia)

+ dispersion causes focal length to vary with wavelength

e for convex lens, blue focal length 1s shorter

+ correct using achromatic doublet

e strong positive lens + weak negative lens =
weak positive compound lens

e by adjusting dispersions, can correct at two wavelengths
2
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Visible Light

< Increasing Frequency (V)

(wikipedia)

0*  10*  10* 1™ 10 10 10”0 10 108 10° 10° 10° 10" v (Hz)
| I | I I | I I I | I | |

X rays uv Microwave (FM AM Long radio waves

Radio waves

| | | | ' | ‘ l | | |
TV RS [ B = 10710 1078 ) 10 10" 10° 10° 10° 10° % (m)

Increasing Wavelength (L) —

Visible spectrum

500 600

Increasing Wavelength () in nm -

® wavelengths between 400nm and 700nm
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lHlumination

(LampTech)

Tungsten Incandescent Daylight (D65) Mercury Fluorescent (MBF)

2
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® wavelengths between 400nm and 700nm
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Trichromatic Vision

Relative energy

=
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T 400 500 600 700 © 400 500 600 700

Wavelength (nm)

?7200 500 600 700
Iight is reﬂected Wavelength (nm)
by an object illumination reflectance stimulus that

(Light) (Obiject) enters your eye

Wavelength (nm)
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Color Gamut:
Consequences

'

t

U
400 5060 600 700

400 500 600 700
Wavelength (nm)

illumination
(Light)

® Goal of photography:




Color Primaries

Stimulus

World

——

(n-dim)

(3-dim)
(P, Y, B)

Primary = (D1, Y1, B1)

Stimulus
Primary fag (2. v ) (g "3 dim)

P, Y, B)

= (03, Y3, B3)




Color Primaries

® Choose three primaries R, G, B.

® Does not have to be pure wavelengths.

® Normalize to obtain a desired reference white

® This yields an RGB cube

i S Ul e

Magenta = (1,0,1) e White = (1,1,1)

Black = (0.0,0) ... Green - (0,1,0)

Red = (1,0,0) _ Yellow = (1,1.0)
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Color Primaries

® What exactly is R, G, B each?

® |s there a specfic wavelength for each? No.

® |s there a specific spectrum for each? Yes, but
you can pick your own.

i S Ul e

Magenta = (1,0,1) e White = (1,1,1)

Black = (0.0,0) ... Green - (0,1,0)

Red = (1,0,0) _ Yellow = (1,1.0)
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Choice of Primaries
® sRGB (HP Microsoft, | 996)
® Adobe RGB (Adobe, 1998)
® Adobe Wide-Gamut RGB

i S Ul e

Magenta = (1,0,1) e White = (1,1,1)

Black = (0.0,0) ... Green - (0,1,0)

Red = (1,0,0) _ Yellow = (1,1.0)




Example Pipeline

processing:
— demosaicing,
analog to digital tone mapping &

conversion B4 white balancing, storage

denoising &
sharpening,
compression

Canon 21 Mpix CMOS sensor

L el
e

Canon DIGIC 4 processor Compact Flash card
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The Science

® Photoelectric Effect

® Materials may generate electrons upon
being hit by a photon.

® Quantum Efficiency

® Not all photons will prod
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The Pixel

® Size matters

® Casio EX-FI:2.5u x 2.5
® Nokia N900:3.1p x 3.1
® Canon 5D llI: 6.4 x 6.4

® Capacity matters




CMOS vs. CCD

Anatomy of the Active Pixel Sensor Photodiode Silicon Photodiode Anatomy

Drain i Incoming
Veltalége Pmilt Photons cco

Control Trgr;st;éer Gates_

Microlens —— | Gate .
Red » /

==Color
Filter Buried
Reset Channel
Amplifier ; Transistor
Transistor S

Select

Column Bus

Bus
Transistor ‘
Photodiode

Silicon

Substrate —— i

\ Lateral

Potential Overflow ppgatodiode l

Drain
Well '”‘5;;2?‘9“ Potential

Figure 3 Figure 5 F’otentia?alell Barrier p-Silicon

® Complimentary Metal-Oxide ® Charge-Coupled Device
Semiconductor

® per-pixel amplifier converts ® charge shifts along
charges to voltage. column to an amplifier

® cheap, low-power but noisy ® good but not as cheap.
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Color Filter Arrays

® Recall: we need information on (p, Y, B).

® Need discrimination among multiple
wavelengths

® Three types (of spectral sensitivity) of
pixels would be sufficient.

o : turns pixels into one of
three types.




Bayer Pattern

® Checkered pattern of green and alternating
red/blue

® Pretty much everywhere
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Bayer Pattern

® Checkered pattern of green and alternating
red/blue

® Pretty much everywhere

400 450 500 550 600 650 700 750 800 400 450 S00 550 600 650 700 750 B80OO

Cone cells Color filters in Canon 30D
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oveon Sensor

The Bayer filter Image Sensor

The old-fashioned Bayer filter image sensor

R: 25%, G: 50%, B: 25% can only capture 50% of the green color data,
and a mere 25% each of the blue and the red.

The Foveon X3® Direct Image Sensor

The Foveon X3® has three layers of
R: 100%, G: 100%, B: 100%  photosensors, enabling it to capture 100%
of the RGB color data at once.



Analog-to-Digital
Conversion

® Convert analog voltage to discrete values.

=4
[
=
w
=
o
=
=4
L
T
'—
=
=
o
=1

DECODER
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Noise: Summary

® Photon shot noise

® Hot pixels

Much of the literature

® Dark current
treats these altogether

® Fixed pattern noise . :
as a Gaussian noise

® Read noise

® Pixel non-uniformity
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Signal v. Noise

Test Chart

Captured by Canon 10D (ISO 1600)




Photon Shot Noise

® Pixels measure the # of incident photons.

® Upon a fixed area, during a fixed time.

® Varies from time to time.

® Varies from pixel to pixel.

® Follows the Poisson distribution.




Dark Current

® Electrons dislodged by random thermal activity.

® |ncreases linearly with exposure time.

® |ncreases exponentially with temperature..




Hot Pixels

® Electrons leaking into wells because of
manufacturing defects

® |ncreases linearly with exposure time.

Canon 20D, |5s/30s exposure



Fixed Pattern Noise

® Manufacturing variations across pixels, columns, etc

® (Constant over time

Canon 20D, 15U 8UU, cropped

Wednesday, January 18, 12




Read Noise

® Thermal noise in readout circuitry

® Mainly in CMOS

Canon |ID Mk lll, cropped
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Pixel Response
Non-Uniformity

® ~|% variance in the sensivity of pixels

® Think about it as a per-pixel vignetting issue.




Quantization Error

® Any ADC process has quantization errors.

® Depends on the bitdepth of the ADC.




Electronic Interference

® |nterference from other circuitry

® Exacerbated by poor insulation




