
Background

• Sales of digital cameras surpassed sales of 
film cameras in 2004.
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Digital cameras are boring

• The most common type of digital camera 
today: cellphone camera.

Can we leverage the computational power?
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Why not use sensors without optics?

✦ each point on sensor would record the integral of 
light arriving from every point on subject

✦ all sensor points would record similar colors

(London)
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Pinhole camera
(a.k.a. camera obscura)

✦ linear perspective with viewpoint at pinhole
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Pinhole photography

✦ no distortion
• straight lines remain straight

✦ infinite depth of field
• everything is in focus

(Bami Adedoyin)
7
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Effect of pinhole size 

8
(London)
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Effect of pinhole size 

9
(London)
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Replacing the pinhole with a lens

10

(London)
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Snell’s law of refraction

✦ as waves change
speed at an interface,
they also change direction

✦ index of refraction nt is defined as
12

(Hecht)

xi
xt

=
sinθi
sinθt

=
nt
ni

speed of light in a vacuum
speed of light in medium t
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Typical refractive indices (n)
✦ air  =  1.0

✦ water  =  1.33

✦ glass  =  1.5 - 1.8

13

mirage due to changes in the index of 
refraction of air with temperature
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Refraction in glass lenses

✦ when transiting from air to glass,
light bends towards the normal

✦ when transiting from glass to air,
light bends away from the normal

✦ light striking a surface perpendicularly does not bend
14

(Hecht)
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Q.  What shape should an interface be
to make parallel rays converge to a point?

A.  a hyperbola

✦ so lenses should be hyperbolic!
15

(Hecht)
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Spherical lenses

✦ two roughly fitting curved surfaces ground together
will eventually become spherical

✦ spheres don’t bring parallel rays to a point
• this is called spherical aberration
• nearly axial rays (paraxial rays) behave best

16

(Hecht) (wikipedia)
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Examples

76
Canon 135mm f/2.8 soft focus lens

sharp soft focus
(Canon)
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Focus shift

✦ Canon 50mm f/1.2 L

77

(wikipedia)

(diglloyd.com)

focused at f/1.2
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Focus shift

✦ Canon 50mm f/1.2 L

✦ narrowing the aperture pushed the focus deeper
78

(wikipedia) shot at f/1.8

(diglloyd.com)
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✦ assume e  ≈  0

18

P P '

object image

e

Paraxial approximation
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Paraxial approximation

✦ assume e  ≈  0

✦ assume sin u  = h / l  ≈  u  (for u in radians)

✦ assume cos u  ≈  z / l  ≈ 1
✦ assume tan u  ≈  sin u  ≈  u

19

P P '

object image

e
u

z

l
h
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The paraxial approximation is
a.k.a. first-order optics

✦ assume first term of
• i.e.  sin ϕ  ≈  ϕ

✦ assume first term of
• i.e.  cos ϕ  ≈ 1
• so tan ϕ  ≈  sin ϕ  ≈  ϕ

20

cos φ = 1 − φ
2

2!
+
φ 4

4!
−
φ 6

6!
+ ...

sin φ = φ −
φ 3

3!
+
φ 5

5!
−
φ 7

7!
+ ...
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Paraxial focusing

21

i i '

P P '(n) (n ')

n sin i = n ' sin i '
Snell’s law:

n i ≈ n ' i '
paraxial approximation:

object image

equivalent to

with

sinθi
sinθt

=
nt
ni

n = ni  for air
n ' = nt  for glass
i, i '  in radians
θi , θt  in degrees

Wednesday, January 11, 12



© Marc Levoy

Paraxial focusing

22

i i '

au u '
h r

P P '
z z '

i = u + a
u ≈ h / z
u ' ≈ h / z '

(n) (n ')

Given object distance z,
what is image distance z’ ?

n i ≈ n ' i '
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Paraxial focusing

✦ h has canceled out, so any ray from P will focus to P’
23

i i '

au u '
h r

P P '
z z '

i = u + a
u ≈ h / z
u ' ≈ h / z '

a = u ' + i '
a ≈ h / r

n (u + a) ≈ n ' (a − u ')

n (h / z + h / r) ≈ n ' (h / r − h / z ')

n / z + n / r ≈ n ' / r − n ' / z '

(n) (n ')

n i ≈ n ' i '
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Focal length

✦  f  ≜ focal length = z’
24

r

P P '
z z '

n / z + n / r ≈ n ' / r − n ' / z '

(n) (n ')

What happens if z is ∞ ? 
n / r ≈ n ' / r − n ' / z '

z ' ≈ (r n ') / (n ' − n)
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Lensmaker’s formula
✦ using similar derivations, one can extend these results to 

two spherical interfaces forming a lens in air

✦ as d → 0 (thin lens approximation),
we obtain the lensmaker’s formula

25

1
so

+
1
si

= (nl −1)
1
R1

−
1
R2

⎛

⎝⎜
⎞

⎠⎟

(Hecht, edited)

si
so
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Gaussian lens formula
✦ Starting from the lensmaker’s formula

✦ and recalling that as object distance so is moved to infinity,
image distance si becomes focal length fi , we get

✦ Equating these two, we get the Gaussian lens formula

26

1
so

+
1
si

= (nl −1)
1
R1

−
1
R2

⎛

⎝⎜
⎞

⎠⎟
,

1
fi

= (nl −1)
1
R1

−
1
R2

⎛

⎝⎜
⎞

⎠⎟
.

1
so

+
1
si

=
1
fi
.

(Hecht, eqn 5.15)

(Hecht, eqn 5.16)

(Hecht, eqn 5.17)
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✦ positive    is rightward, positive    is leftward

✦ positive    is upward
27

object image

yo

yi

so si
si so
y

From Gauss’s ray construction
to the Gaussian lens formula
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yi
yo

=
si
so

object image

yo

yi

so si

From Gauss’s ray construction
to the Gaussian lens formula
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yi
yo

=
si
so

yo

y

yi

so si

f

and yi
yo

=
si − f
f

object image

..... 1
so

+
1
si

=
1
f

(positive is to right of lens)

From Gauss’s ray construction
to the Gaussian lens formula
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Changing the focus distance

✦ to focus on objects
at different distances,
move sensor relative to lens

30

sensor

f f

1
so

+
1
si

=
1
f

(Flash demo)
http://graphics.stanford.edu/courses/

cs178/applets/gaussian.html
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Changing the focus distance

✦ to focus on objects
at different distances,
move sensor relative to lens

✦ at     =      =     
we have 1:1 imaging, because

31

sensor

f f

1
2 f

+
1
2 f

=
1
f

2 fso si

1
so

+
1
si

=
1
f

In 1:1 imaging, if the sensor is
36mm wide, an object 36mm
wide will fill the frame.
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Changing the focus distance

✦ to focus on objects
at different distances,
move sensor relative to lens

✦ at     =      =     
we have 1:1 imaging, because

✦ can’t focus on objects
closer to lens than its
focal length f

32

sensor

f f

1
2 f

+
1
2 f

=
1
f

2 fso si

1
so

+
1
si

=
1
f
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✦ weaker lenses
have longer
focal lengths

✦ to stay in focus,
move the sensor
further back

✦ focused image
of tree is located
slightly beyond
the focal length

Changing the focal length

33

(Kingslake)

The tree would be in focus at the lens focal 
length only if it were infinitely far away.
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✦ if the sensor
size is constant,
the field of view
becomes smaller

Changing the focal length

34

FOV = 2 arctan (h / 2 f )

FOV

h

f
(Kingslake)
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Focal length and field of view

35

(London)

FOV measured diagonally on a
         35mm full-frame camera (24 × 36mm)
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Focal length and field of view

36

(London)

FOV measured diagonally on a
         35mm full-frame camera (24 × 36mm)
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Changing the sensor size
✦ if the sensor

size is smaller,
the field of view
is smaller too

✦ smaller sensors
either have fewer
pixels, or noiser
pixels

37

θFOV1
θFOV2

(Kingslake)

Wednesday, January 11, 12



© Marc Levoy

Sensor sizes

38

“APS-C”
Nikon D40

(15.5mm × 23.7mm)
(~1.5× crop factor)

“point-and-shoot”
Canon A590

(5.75mm × 4.31mm)
(~8× crop factor)

“micro 4/3”
Panasonic GF1
(13mm × 17.3mm)
(~2× crop factor)

“full frame”
Canon 5D Mark II

(24mm × 36mm)
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Magnification

42

object image

yo

yi

so si

 
MT @ yi

yo
= −

si
so
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Lenses perform a 3D perspective transform

✦ lenses transform a 3D object to a 3D image;
the sensor extracts a 2D slice from that image

✦ as an object moves linearly (in Z),
its image moves non-proportionately (in Z)

✦ as you move a lens linearly relative to the sensor,
the in-focus object plane moves non-proportionately

✦ as you refocus a camera, the image changes size !43

(Hecht)

(Flash demo)
http://graphics.stanford.edu/courses/

cs178/applets/thinlens.html
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Lenses perform a 3D perspective transform
(contents of whiteboard)

✦ a cube in object space is transformed by a lens into a 3D frustum in 
image space, with the orientations shown by the arrows

✦ in computer graphics this transformation is modeled as a 4 × 4 matrix 
multiplication of 3D points expressed in 4D homogenous coordinates

✦ in photography a sensor extracts a 2D slice from the 3D frustum; on 
this slice some objects may be sharply focused; others may be blurry

44
Wednesday, January 11, 12



© Marc Levoy

Depth of field

✦ lower N means a wider aperture and less depth of field
46

N =
f
A

(London)
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Circle of confusion (C)

✦ C depends on sensing medium, reproduction medium,
viewing distance, human vision,...
• for print from 35mm film, 0.02mm (on negative) is typical
• for high-end SLR, 6µ is typical  (1 pixel)
• larger if downsizing for web, or lens is poor

47
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Chromatic aberration

✦ dispersion causes focal length to vary with wavelength
• for convex lens, blue focal length is shorter

✦ correct using achromatic doublet
• strong positive lens + weak negative lens =

weak positive compound lens
• by adjusting dispersions, can correct at two wavelengths

71

(wikipedia)

red and blue have
the same focal length
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Visible Light

• wavelengths between 400nm and 700nm

(wikipedia)
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Illumination

• wavelengths between 400nm and 700nm

(LampTech)
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Trichromatic Vision

× =

illumination
(Light)

reflectance
(Object)

stimulus that
enters your eye

light is reflected
by an object

Cone cells
(3 types)

Wednesday, January 18, 12



Color Gamut:
Consequences

• Goal of photography: reproduce the 
sensation of seeing a scene.

reflectance
(Object)

×

illumination
(Light)

ρ

γ

β
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Color Primaries

World
(n-dim)

Stimulus
(3-dim)

(ρ, γ, β)

Primary

Primary

Primary

(ρ1, γ1, β1)

(ρ2, γ2, β2)

(ρ3, γ3, β3)

⊕
(ρ, γ, β)

Stimulus
(3-dim)
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• Choose three primaries R, G, B.

• Does not have to be pure wavelengths.

• Normalize to obtain a desired reference white

• This yields an RGB cube

Color Primaries
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• What exactly is R, G, B each?

• Is there a specfic wavelength for each? No.

• Is there a specific spectrum for each? Yes, but 
you can pick your own.

Color Primaries
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• sRGB (HP, Microsoft, 1996)

• Adobe RGB (Adobe, 1998)

• Adobe Wide-Gamut RGB

• ...

Choice of Primaries
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Canon 21 Mpix CMOS sensor

Example Pipeline

Canon DIGIC 4 processor Compact Flash card

sensor

processing:
demosaicing,

 tone mapping &
white balancing,

denoising &
sharpening,

compression

analog to digital
conversion

(ADC)
storage
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The Science

• Photoelectric Effect

• Materials may generate electrons upon 
being hit by a photon.

• Quantum Efficiency

• Not all photons will produce an electron.
back-illuminated

CMOS (Sony)
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The Pixel

• Size matters

• Casio EX-F1: 2.5μ x 2.5μ

• Nokia N900: 3.1μ x 3.1μ

• Canon 5D II: 6.4μ x 6.4μ

• Capacity matters
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CMOS vs. CCD

• Complimentary Metal-Oxide 
Semiconductor

• per-pixel amplifier converts 
charges to voltage.

• cheap, low-power but noisy

• Charge-Coupled Device

• charge shifts along 
column to an amplifier

• good but not as cheap.
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Color Filter Arrays

• Recall: we need information on (ρ, γ, β).

• Need discrimination among multiple 
wavelengths

• Three types (of spectral sensitivity) of 
pixels would be sufficient.

• Color filter array: turns pixels into one of 
three types.
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Bayer Pattern
• Checkered pattern of green and alternating 

red/blue

• Pretty much everywhere
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Bayer Pattern
• Checkered pattern of green and alternating 

red/blue

• Pretty much everywhere

Color filters in Canon 30DCone cells

Wednesday, January 18, 12



Foveon Sensor
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Analog-to-Digital 
Conversion

• Convert analog voltage to discrete values.
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Noise: Summary

• Photon shot noise

• Hot pixels

• Dark current

• Fixed pattern noise

• Read noise

• Pixel non-uniformity

• ...

Much of the literature 
treats these altogether 

as a Gaussian noise
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Signal v. Noise

Test Chart

Captured by Canon 10D (ISO 1600)
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Photon Shot Noise

• Pixels measure the # of incident photons.

• Upon a fixed area, during a fixed time.

• Varies from time to time.

• Varies from pixel to pixel.

• Follows the Poisson distribution.
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Dark Current
• Electrons dislodged by random thermal activity.

• Increases linearly with exposure time.

• Increases exponentially with temperature..

Canon 20D, 612s exposure 
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Hot Pixels
• Electrons leaking into wells because of 

manufacturing defects

• Increases linearly with exposure time.

Canon 20D, 15s/30s exposure 
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Fixed Pattern Noise
• Manufacturing variations across pixels, columns, etc

• Constant over time

Canon 20D, ISO 800, cropped
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Read Noise
• Thermal noise in readout circuitry

• Mainly in CMOS

Canon 1D Mk III, cropped
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Pixel Response
Non-Uniformity

• ~1% variance in the sensivity of pixels

• Think about it as a per-pixel vignetting issue.
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Quantization Error

• Any ADC process has quantization errors.

• Depends on the bitdepth of the ADC.
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Electronic Interference

• Interference from other circuitry

• Exacerbated by poor insulation

Wednesday, January 18, 12


