
Objective-C
#import "Vehicle.h"

@interface Spaceship : Vehicle

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@implementation Spaceship

@end
Stanford CS193p

Fall 2011

Superclass’s header file.
This is often <UIKit/UIKit.h> .

SuperclassClass name

Importing our own header file.

Note, superclass not specified here.

Objective-C
#import "Vehicle.h"

@interface Spaceship : Vehicle

// declaration of public methods

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@implementation Spaceship

// implementation of public and private methods

@end
Stanford CS193p

Fall 2011

Objective-C
#import "Vehicle.h"

@interface Spaceship : Vehicle

// declaration of public methods

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)

@end

@implementation Spaceship

// implementation of public and private methods

@end
Stanford CS193p

Fall 2011

Don’t forget the ().

No superclass here either.

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)

@end

@implementation Spaceship

// implementation of public and private methods

@end
Stanford CS193p

Fall 2011

The full name of this method is
orbitPlanet:atAltitude:

It does not return any value.

It takes two arguments.
Note how each is preceded by its own keyword.

Lining up the colons
makes things look nice.

We need to import Planet.h for
method declaration below to work.

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)

@end

@implementation Spaceship

// implementation of public and private methods

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
}

@end
Stanford CS193p

Fall 2011

No semicolon here.

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

- (void)setTopSpeed:(double)percentSpeedOfLight;
- (double)topSpeed;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)

@end

@implementation Spaceship

// implementation of public and private methods

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
}

@end
Stanford CS193p

Fall 2011

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

- (void)setTopSpeed:(double)percentSpeedOfLight;
- (double)topSpeed;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)

@end

@implementation Spaceship

// implementation of public and private methods

- (void)setTopSpeed:(double)speed
{
 ???
}

- (double)topSpeed
{
 ???
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
}

@end
Stanford CS193p

Fall 2011

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

- (void)setTopSpeed:(double)percentSpeedOfLight;
- (double)topSpeed;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)

@end

@implementation Spaceship

// implementation of public and private methods

- (void)setTopSpeed:(double)speed
{
 ???
}

- (double)topSpeed
{
 ???
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
}

@end
Stanford CS193p

Fall 2011

This @property
essentially declares
the two “topSpeed”
methods below.

nonatomic means its setter and getter are not thread-safe.
That’s no problem if this is UI code because all UI code happens

on the main thread of the application.

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)

@end

@implementation Spaceship

// implementation of public and private methods

- (void)setTopSpeed:(double)speed
{
 ???
}

- (double)topSpeed
{
 ???
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
}

@end
Stanford CS193p

Fall 2011

We never declare both the @property and
its setter and getter in the header file

(just the @property).

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)

@end

@implementation Spaceship

// implementation of public and private methods

@synthesize topSpeed = _topSpeed;

- (void)setTopSpeed:(double)speed
{
 ???
}

- (double)topSpeed
{
 ???
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
}

@end
Stanford CS193p

Fall 2011

We almost always use @synthesize to create the
implementation of the setter and getter for a @property.

It both creates the setter and getter methods AND
creates some storage to hold the value.

This is the name of the
storage location to use.

_ (underbar) then the name of the
property is a common naming convention.

If we don’t use = here, @synthesize
uses the name of the property
(which is bad so always use =).

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)

@end

@implementation Spaceship

// implementation of public and private methods

@synthesize topSpeed = _topSpeed;

- (void)setTopSpeed:(double)speed
{
 _topSpeed = speed;
}

- (double)topSpeed
{
 return _topSpeed;
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
}

@end
Stanford CS193p

Fall 2011

This is what the methods
created by @synthesize

would look like.

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)

@end

@implementation Spaceship

// implementation of public and private methods

@synthesize topSpeed = _topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
}

@end
Stanford CS193p

Fall 2011

Most of the time, you can let @synthesize do all
the work of creating setters and getters

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)

@end

@implementation Spaceship

// implementation of public and private methods

@synthesize topSpeed = _topSpeed;

- (void)setTopSpeed:(double)speed
{
 if ((speed < 1) && (speed > 0)) _topSpeed = speed;
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
}

@end
Stanford CS193p

Fall 2011

However, we can create our own if there is any
special work to do when setting or getting.

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)
@property (nonatomic, strong) Wormhole *nearestWormhole;
@end

@implementation Spaceship

// implementation of public and private methods

@synthesize topSpeed = _topSpeed;

- (void)setTopSpeed:(double)speed
{
 if ((speed < 1) && (speed > 0)) _topSpeed = speed;
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
}

@end
Stanford CS193p

Fall 2011

Here’s another @property.
This one is private (because it’s in our .m file).

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)
@property (nonatomic, strong) Wormhole *nearestWormhole;
@end

@implementation Spaceship

// implementation of public and private methods

@synthesize topSpeed = _topSpeed;

- (void)setTopSpeed:(double)speed
{
 if ((speed < 1) && (speed > 0)) _topSpeed = speed;
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
}

@end
Stanford CS193p

Fall 2011

It’s a pointer to an object (of class Wormhole).
It’s strong which means that the memory used by this

object will stay around for as long as we need it.

All objects are always allocated on the heap.
So we always access them through a pointer. Always.

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)
@property (nonatomic, strong) Wormhole *nearestWormhole;
@end

@implementation Spaceship

// implementation of public and private methods

@synthesize topSpeed = _topSpeed;
@synthesize nearestWormhole = _nearestWormhole;

- (void)setTopSpeed:(double)speed
{
 if ((speed < 1) && (speed > 0)) _topSpeed = speed;
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
}

@end
Stanford CS193p

Fall 2011

This creates the setter and getter for our new @property.

@synthesize does NOT create storage
for the object this pointer points to.
It just allocates room for the pointer.

We’ll talk about how to allocate and
initialize the objects themselves next week.

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)
@property (nonatomic, strong) Wormhole *nearestWormhole;
@end

@implementation Spaceship

// implementation of public and private methods

@synthesize topSpeed = _topSpeed;
@synthesize nearestWormhole = _nearestWormhole;

- (void)setTopSpeed:(double)speed
{
 if ((speed < 1) && (speed > 0)) _topSpeed = speed;
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here

}

@end
Stanford CS193p

Fall 2011

Now let’s take a look at some example coding.
This is just to get a feel for Objective-C syntax.

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)
@property (nonatomic, strong) Wormhole *nearestWormhole;
@end

@implementation Spaceship

// implementation of public and private methods

@synthesize topSpeed = _topSpeed;
@synthesize nearestWormhole = _nearestWormhole;

- (void)setTopSpeed:(double)speed
{
 if ((speed < 1) && (speed > 0)) _topSpeed = speed;
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
 double speed = [self topSpeed];
 if (speed > MAX_RELATIVE) speed = MAX_RELATIVE;

}

@end
Stanford CS193p

Fall 2011

We’re calling topSpeed’s getter on ourself here.

The “square brackets” syntax
is used to send messages.

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

- (void)setTopSpeed:(double)percentSpeedOfLight;
- (double)topSpeed;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)
@property (nonatomic, strong) Wormhole *nearestWormhole;
@end

@implementation Spaceship

// implementation of public and private methods

@synthesize topSpeed = _topSpeed;
@synthesize nearestWormhole = _nearestWormhole;

- (void)setTopSpeed:(double)speed
{
 if ((speed < 1) && (speed > 0)) _topSpeed = speed;
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
 double speed = [self topSpeed];
 if (speed > MAX_RELATIVE) speed = MAX_RELATIVE;

}

@end
Stanford CS193p

Fall 2011

A reminder of what our getter declaration looks like.
Recall that these two declarations are accomplished with

the @property for topSpeed above.

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)
@property (nonatomic, strong) Wormhole *nearestWormhole;
@end

@implementation Spaceship

// implementation of public and private methods

@synthesize topSpeed = _topSpeed;
@synthesize nearestWormhole = _nearestWormhole;

- (void)setTopSpeed:(double)speed
{
 if ((speed < 1) && (speed > 0)) _topSpeed = speed;
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
 double speed = [self topSpeed];
 if (speed > MAX_RELATIVE) speed = MAX_RELATIVE;
 [[self nearestWormhole] travelToPlanet:aPlanet
 atSpeed:speed];
}

@end
Stanford CS193p

Fall 2011

Here’s another example of sending a message.
It looks like this method has 2 arguments:

a Planet to travel to and a speed to travel at.
It is being sent to an instance of Wormhole. Square brackets inside square brackets.

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)
@property (nonatomic, strong) Wormhole *nearestWormhole;
@end

@implementation Spaceship

// implementation of public and private methods

@synthesize topSpeed = _topSpeed;
@synthesize nearestWormhole = _nearestWormhole;

- (void)setTopSpeed:(double)speed
{
 if ((speed < 1) && (speed > 0)) _topSpeed = speed;
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
 double speed = self.topSpeed;
 if (speed > MAX_RELATIVE) speed = MAX_RELATIVE;
 [[self nearestWormhole] travelToPlanet:aPlanet
 atSpeed:speed];
}

@end
Stanford CS193p

Fall 2011

Calling getters and setters is such an important
task, it has its own syntax: dot notation.

This is identical to [self topSpeed].

Objective-C
#import "Vehicle.h"
#import "Planet.h"

@interface Spaceship : Vehicle

// declaration of public methods

@property (nonatomic) double topSpeed;

- (void)orbitPlanet:(Planet *)aPlanet
 atAltitude:(double)km;

@end

Spaceship.h Spaceship.m
#import "Spaceship.h"

@interface Spaceship()
// declaration of private methods (as needed)
@property (nonatomic, strong) Wormhole *nearestWormhole;
@end

@implementation Spaceship

// implementation of public and private methods

@synthesize topSpeed = _topSpeed;
@synthesize nearestWormhole = _nearestWormhole;

- (void)setTopSpeed:(double)speed
{
 if ((speed < 1) && (speed > 0)) _topSpeed = speed;
}

- (void)orbitPlanet:(Planet *)aPlanet atAltitude:(double)km
{
 // put the code to orbit a planet here
 double speed = self.topSpeed;
 if (speed > MAX_RELATIVE) speed = MAX_RELATIVE;
 [self.nearestWormhole travelToPlanet:aPlanet
 atSpeed:speed];
}

@end
Stanford CS193p

Fall 2011
We can use dot notation here too.

Stanford CS193p
Fall 2011

Dot Notation
Dot notation
@property access looks just like C struct member access

typedef struct {
 float x;
 float y;
} CGPoint;

Notice that we capitalize CGPoint (just like a class name).
It makes our C struct seem just like an object with @propertys

(except you can’t send any messages to it).

Stanford CS193p
Fall 2011

Dot Notation
Dot notation
@property access looks just like C struct member access

typedef struct {
 float x;
 float y;
} CGPoint;

@interface Bomb
@property CGPoint position;
@end

@interface Ship : Vehicle

@property float width;
@property float height;
@property CGPoint center;

- (BOOL)getsHitByBomb:(Bomb *)bomb;

@end

Returns whether the passed bomb
would hit the receiving Ship.

Stanford CS193p
Fall 2011

Dot Notation
Dot notation
@property access looks just like C struct member access

typedef struct {
 float x;
 float y;
} CGPoint;

@interface Bomb
@property CGPoint position;
@end

@interface Ship : Vehicle

@property float width;
@property float height;
@property CGPoint center;

- (BOOL)getsHitByBomb:(Bomb *)bomb;

@end

@implementation Ship

@synthesize width, height, center;

- (BOOL)getsHitByBomb:(Bomb *)bomb
{
 float leftEdge = self.center.x - self.width/2;
 float rightEdge = ...;

 return ((bomb.position.x >= leftEdge) &&
 (bomb.position.x <= rightEdge) &&
 (bomb.position.y >= topEdge) &&
 (bomb.position.y <= bottomEdge));
}

@end Dot notation to reference
an object’s @property.

Stanford CS193p
Fall 2011

Dot Notation
Dot notation
@property access looks just like C struct member access

typedef struct {
 float x;
 float y;
} CGPoint;

@interface Bomb
@property CGPoint position;
@end

@interface Ship : Vehicle

@property float width;
@property float height;
@property CGPoint center;

- (BOOL)getsHitByBomb:(Bomb *)bomb;

@end

@implementation Ship

@synthesize width, height, center;

- (BOOL)getsHitByBomb:(Bomb *)bomb
{
 float leftEdge = self.center.x - self.width/2;
 float rightEdge = ...;

 return ((bomb.position.x >= leftEdge) &&
 (bomb.position.x <= rightEdge) &&
 (bomb.position.y >= topEdge) &&
 (bomb.position.y <= bottomEdge));
}

@end Dot notation to reference
an object’s @property.

Normal C struct
dot notation.

Stanford CS193p
Fall 2011

Blocks
What is a block?
A block of code (i.e. a sequence of statements inside {}).
Usually included “in-line” with the calling of method that is going to use the block of code.
Very smart about local variables, referenced objects, etc.

What does it look like?
Here’s an example of calling a method that takes a block as an argument.
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([@“ENOUGH” isEqualToString:key]) {
 *stop = YES;
 }
}];
This NSLog()s every key and value in aDictionary (but stops if the key is ENOUGH).

Blocks start with the magical character caret ^
Then it has (optional) arguments in parentheses, then {, then code, then }.

Stanford CS193p
Fall 2011

Blocks
When do we use blocks in iOS?
Enumeration
View Animations (more on that later in the course)
Sorting (sort this thing using a block as the comparison method)
Notification (when something happens, execute this block)
Error handlers (if an error happens while doing this, execute this block)
Completion handlers (when you are done doing this, execute this block)

And a super-important use: Multithreading
With Grand Central Dispatch (GCD) API

Stanford CS193p
Fall 2011

Grand Central Dispatch
GCD is a C API
The basic idea is that you have queues of operations
The operations are specified using blocks.
Most queues run their operations serially (a true “queue”).
We’re only going to talk about serial queues today.

The system runs operations from queues in separate threads
Though there is no guarantee about how/when this will happen.
All you know is that your queue’s operations will get run (in order) at some point.
The good thing is that if your operation blocks, only that queue will block.
Other queues (like the main queue, where UI is happening) will continue to run.

So how can we use this to our advantage?
Get blocking activity (e.g. network) out of our user-interface (main) thread.
Do time-consuming activity concurrently in another thread.

Stanford CS193p
Fall 2011

Grand Central Dispatch
Important functions in this C API
Creating and releasing queues
dispatch_queue_t dispatch_queue_create(const char *label, NULL); // serial queue
void dispatch_release(dispatch_queue_t);

Putting blocks in the queue
typedef void (^dispatch_block_t)(void);
void dispatch_async(dispatch_queue_t queue, dispatch_block_t block);

Getting the current or main queue
dispatch_queue_t dispatch_get_current_queue();
void dispatch_queue_retain(dispatch_queue_t); // keep it in the heap until dispatch_release

dispatch_queue_t dispatch_get_main_queue();

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;
}

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ^{

});

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ^{

});

Problem! UIKit calls can only happen in the main thread!

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];

 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ^{

});

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];

 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ^{

});

dispatch_async(dispatch_get_main_queue(), ^{

});

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];

 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ^{

});

Problem! This “leaks” the downloadQueue in the heap. We have to dispatch_release it.

dispatch_async(dispatch_get_main_queue(), ^{

});

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];

 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ^{

});

dispatch_async(dispatch_get_main_queue(), ^{

});

 dispatch_release(downloadQueue);

Don’t worry, it won’t remove the queue from the heap until all blocks have been processed.

